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Figure 3: Weighted sum in reference to inverse Loss ( 1 - Loss) and BLEU score.

Figure 4: Training-Loss and Evaluation-Loss over the steps of the Final Training

Introduction:
Domain-Driven Design (DDD) remains pivotal for building software that closely aligns 
with customer requirements by modeling domain concepts accurately. The intricate 
process of creating domain metamodels, however, traditionally relies on manual input 
from system designers, necessitating expertise and significant time investment. The 
rise of generative AI offers new opportunities to streamline these efforts by automating 
parts of the metamodel creation process. This paper investigates the use of generative 
AI, specifically a fine-tuned version of Code Llama, for the automated generation of 
JSON objects representative of domain-specific constructs.
Our research focused on the feasibility and effectiveness of training generative AI to 
generate syntactically correct JSON objects based on minimal prompts, a process 
crucial for supporting iterative software development in DDD. By fine-tuning the model 
on real-world DDD data and employing techniques such as 4-bit quantization and Low-
Rank Adaptation (LoRA), we achieved robust results even on consumer-grade 
hardware. The findings underscore the potential of such models to serve as 
foundational tools in the DDD process, enhancing productivity and reducing resource 
expenditure.
The practical relevance of this work is embodied in the Domainlifecycles Code 
Generator (DCG). DCG functions as an AI-driven assistant integrated into the Analysis 
and Modeling phase (1) of the Domainlifecycle process, where it automates the creation 
of domain-specific language (DSL) components. As depicted in Figure 1, this phase is 
the first in a series of agile steps that include generating the code framework, 
implementing business logic, and refining the model through feedback. By streamlining 
the analysis and modeling phase, DCG enhances workflow efficiency, supporting the 
rapid and precise development of adaptable, business-aligned software solutions.

Methods: 
To develop an initial generative AI assistant for Domain-Driven Design (DDD), this 
project trained a next-token predictor to generate domain models in JSON format for 
specified classes, focusing on machine-readable JSON output as a primary 
requirement.
Data for this project came from a sample project and a client project, requiring strict 
confidentiality measures. Data was anonymized and abstracted during preprocessing, 
which also involved formatting and preparing it for model training (see Figure 2). The 
resulting data was used to fine-tune a CodeLlama-7B model using Low-Rank 
Adaptation (LoRA) and quantization, allowing the model to train efficiently on only 11GB 
of VRAM.
Model performance was assessed using the BLEU score and training loss, recorded via 
the Hugging Face Trainer. These metrics also guided hyperparameter tuning, where a 
weighted score combining BLEU and inverse loss (1 - loss) helped identify optimal 
settings. Final training was completed using these tuned parameters, resulting in the 
model used for further validation.
To ensure the model could generate syntactically valid and meaningful DDD outputs, a 
three-phase assessment process was applied. First, evaluation metrics were reviewed 
to confirm baseline performance. Next, 100 JSON objects were generated from prompts 
and checked for syntactic correctness with a JSON parser. Finally, a qualitative analysis 
was conducted on selected samples to identify any potential issues. This multi-phase 
evaluation provided a comprehensive understanding of the model’s suitability for 
generating structured, machine-readable DDD outputs.

Results:

In the final training phase, the model achieved a loss of 0.0337 on the evaluation data 
and 0.0393 on the test data, alongside BLEU scores of 0.9924 on evaluation data and 
0.9918 on test data. The minimal differences in loss and BLEU scores between 
evaluation and test datasets suggest that the model training was effective and 
consistent across both sets.
To assess the model’s performance, JSON samples generated by the model were 
reviewed in two distinct categories based on the clarity of the input prompts. In cases 
labeled "Experimental," the prompts did not clearly specify the target object for the 
JSON output, whereas "Clear" samples were based on explicit prompts that defined the 
object to be generated. Out of 100 samples generated, 81 were successfully parsed by 
a JSON parser with only minor post-processing, indicating they were syntactically 
correct. Notably, all 50 samples within the "Clear" category were syntactically accurate, 
suggesting that the model produces optimal results when prompts are specific.
A final analysis of errors and incorrectly generated samples provided further insights, 
identifying several patterns that may guide improvements in future model versions. 
Overall, the findings demonstrate that the model can produce machine-readable JSON 
objects when given appropriate prompts. Fine-tuning on a GPU with sufficient memory 
yielded strong results, and dataset abstraction reduced complexity, allowing for the use 
of customer data. This initial model version shows potential for integration into 
applications, with attention to the identified biases.

    Figure 2: The visualization of the dataset generation process commences with the data import (0. Data Import) 
and progresses to data cleaning (1. Data Cleaning), data chunking (2. Data Chunking), the addition of tokens (start, 
end and pad tokens), and the shuffling of individual chunks (3. Chunk Shuffle). Finally, the data was split into training, 
evaluation, and test data (4. Data Splits), which was subsequently provided to the model training (5. Model Training).

Figure 1: The illustration of the agile steps of the Domainlifecycle-process: Creating the domain model from business 
information (1. Analysis and Modeling), generating the code framework (2. Code Generation), formulating the logic in 
the code (3. Code Implementation) and receiving feedback and new business insights through presentation to the 
customer (4. Model Evaluation and Feedback).


