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Abstract. Domain-Driven Design (DDD) is a key framework for developing cus-
tomer-oriented software, focusing on the precise modeling of an application’s do-
main. Traditionally, metamodels that describe these domains are created manually
by system designers, forming the basis for iterative software development. This
paper explores the partial automation of metamodel generation using generative
AI, particularly for producing domain-specific JSON objects. By training a model
on real-world DDD project data, we demonstrate that generative AI can produce
syntactically correct JSON objects based on simple prompts, offering significant
potential for streamlining the design process. To address resource constraints, the
AI model was fine-tuned on a consumer-grade GPU using a 4-bit quantized version
of Code Llama and Low-Rank Adaptation (LoRA). Despite limited hardware, the
model achieved high performance, generating accurate JSON objects with minimal
post-processing. This research illustrates the viability of incorporating generative
AI into the DDD process, improving efficiency and reducing resource requirements,
while also laying the groundwork for further advancements in AI-driven software
development.

Keywords: Generative AI, Domain-Driven Design, LoRA, QLoRA, Quantiza-
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1 Introduction

Creating customer-oriented software demands efficient tools and methods. A promising
approach is the Domain-Driven Design (DDD) pattern[1], a robust framework for software
development emphasizing the understanding and modeling of the application’s domain.
Initially, the software is described using Domain Specific Language (DSL) in JSON or
UML, forming a Domain Model (DM) that underpins the iterative development process.
From this DM, a code framework is derived, which is then endowed with logic to create
a prototype. This prototype generates insights for refining the DM further.

The initial DM generation is typically a manual task performed by a system designer
using a GUI tool. To enhance this process, we explore in this paper the possibility of
partially automating it with the help of generative AI. We demonstrate how genera-
tive models can learn to create syntactically correct JSON objects for describing the
DDD DM. Moreover, we show that being trained on real-world data from existing DDD
projects, the AI model can automatically generate new parts of a DM through simple
interactions with a system prompt. The AI model’s ability to produce syntactically cor-
rect JSON objects ensures machine readability, facilitating integration into existing DDD
development tools.



Due to data confidentiality, the use of commercial Large Language Models (LLMs)
are not an option, which led us to the constraint to develop the JSON code generator
model on resource-restrictive hardware, specifically a single consumer-grade GPU.

The final results on the test dataset yielded impressively low loss on JSON generation
and high BLEU[2] scores, underscoring the model’s proficiency. Most of the generated
JSON objects exhibited syntactical correctness with minimal post-processing, and all
JSON objects created from clear prompts were syntactically correct. The successful cre-
ation of a code generator for JSON objects in the DSL signifies a pivotal advancement
towards incorporating generative AI into the DDD-based software development process,
enhancing both efficiency and efficacy.

2 Related Work

The foundation for this work lies in the principles of DDD, as established by Eric Evans
in his seminal works[1,3]. DDD provides a strategic approach to software development,
emphasizing the modeling of complex systems based on their underlying business do-
mains. The company internal framework used for this work builds upon these principles
and knowledge regarding this were obtained from the internal documentation[4].

To address the challenges of efficient resource utilization in AI model training and
deployment, techniques such as Parameter Efficient Fine-Tuning (PEFT) were employed,
specifically the Low Rank Adaptation (LoRA) method introduced by Hu et al.[5]. Fur-
ther refinements, including quantization methods like Quantized Low Rank Adapta-
tion (QLoRA) by Dettmers et al.[6], played a crucial role in optimizing performance
on resource-constrained hardware. The model in this work was quantized to 4-bit preci-
sion using the ‘BitsAndBytes‘ library from Hugging Face[7]. This approach is supported
by research on low-precision quantization, such as the work of Sun et al.[8] and Neshaei
et al.[9].

The model used for the code generation component was Code Llama from Meta4,
proposed by Rozière et al.[10]. Other models relevant to this field include StarCoder[11]
and CodeT5[12]. Additionally, commercial AI code generation tools such as GitHub Copi-
lot [13] and Amazon CodeWhisperer [14] provide further context and reference in evaluat-
ing the landscape of AI-assisted software development.

For the evaluation of the importance of the hyperparameters after hyperparameter
Tuning we used a permutation importance analysis referencing the Random Forest Re-
gressor from Louppe [15].

For performance evaluation, two key metrics, BLEU [16] and Loss, were used to assess
the quality of the fine-tuned model. These metrics have been adopted in the evaluation
of code generation models, as discussed in the works of Chen et al.[17] and Yetiştiren et
al.[18], providing a foundation for assessing syntactic and semantic alignment in generated
outputs.

3 Methods

In this section, a comprehensive outline of the methodological approach is presented,
detailing the processes and techniques used for data handling, model development, and
evaluation.

4 https://www.llama.com/code-llama/



Goals and Constraints: This work explores integrating Generative AI into the soft-
ware development process within a DDD framework, focusing on automating early-stage
development by generating DMs from business requirements. The prototype uses causal
language modeling to produce Unified Modeling Language (UML) representations in
JSON format, aligning with the iterative nature of DDD.

Technical constraints include the use of open-weight models due to data privacy reg-
ulations, prohibiting commercial AI models and requiring local hosting and fine-tuning.
Additionally, the project operates under a €1000 budget for external computational re-
sources, demanding resource-efficient model selection and training. The limited dataset
further challenges the generation of unbiased, generalizable results, requiring mitigation
of data-induced biases. The research aims to evaluate the feasibility of AI-driven code
generation within these constraints, emphasizing model performance, resource manage-
ment, and compliance.

Data Basis: The dataset utilized for this study comprises 1,022 files, each containing
a single JSON object. Of these, 821 files—accounting for 80% of the dataset—originate
from a customer project, while the remaining 20% are derived from a test project. The
data represent hierarchically structured DDD logic, encoded in JSON format.

Each JSON object consists of specific key-value pairs, which are defined within a
specialized framework. These key-value structures are inherited from a metamodel, which
serves as the basis for the framework’s logic. However, the metamodel itself is not included
within the dataset, limiting direct access to the underlying inheritance structure.

Data Pre-Processing: The data pre-processing step is essential for developing a ro-
bust code generator, particularly given the dataset’s significant bias, with approximately
80% of the dataset sourced from a customer project and 20% from a test project. This
dataset, comprising 1,022 files containing completed JSON[19] objects, necessitates care-
ful handling to ensure effective model training.

The pre-processing process began with data import, followed by cleaning and ab-
straction, where high-variability keys were replaced with placeholder values to anonymize
customer-specific information. This step not only protects sensitive data but also simpli-
fies the dataset’s complexity, allowing for a clearer focus on the JSON structure. Sub-
sequently, the data was chunked into non-overlapping segments of 2,048 tokens, which
were shuffled to enhance randomness. The final step involved a double 80:20 split[20] of
the data into training, evaluation, and test sets, resulting in 64% for training, 16% for
evaluation, and 20% for testing. This structured approach to data pre-processing ensures
that the dataset is well-prepared for effective model training while maintaining com-
pliance with data privacy standards. After exportation, the datasets were versioned for
future use, solidifying the pre-processing phase as a foundational element in the overall
development process. A full process flow of data pre-processing is displayed in Figure 1.

Training and Setup: The foundation of the code generator utilizes the Code Llama
7B model, released by Meta5 proposed by Rozière et al.[10]. With a VRAM size of
approximately 25 GB, it necessitated adaptations for the limited hardware available,
including a local PC with an RTX 2080 GPU (11 GB VRAM) and a Lambda Cloud6

instance with an RTX A6000 GPU (48 GB VRAM). Due to financial constraints, the

5 https://www.llama.com/code-llama/
6 https://lambdalabs.com/service/gpu-cloud



Fig. 1. Abstracted visualization of the various steps of data pre-processing with data cleaning,
chunking and splitting to the various data sets for training.

cloud instance was primarily used for hyperparameter tuning. To facilitate fine-tuning on
the local setup, a 4-bit quantization was applied, reducing the model’s size to around 4
GB VRAM. The LoRAmethod, part of PEFT, was selected due to its proven effectiveness
when combined with model quantization. The Hugging Face Transformers7 framework’s
Trainer[21] was employed alongside a LoRA adapter to optimize training on constrained
hardware. This was used to fine-tune Code Llama 7B to generate JSON with the help
of Next Token Prediction from the dataset. Key training arguments were established
to manage resource use, including batch size, gradient accumulation steps, and mixed-
precision training. Evaluation metrics were critical for assessing model performance; while
the built-in loss function was utilized, metrics such as BLEU [22] and ROUGE-L-F1[23]
were employed to guide the training process. Memory overflow issues were addressed
by implementing a custom function for pre-processing logits, ensuring efficient metric
evaluation. Overall, the training utilized both local and cloud resources.

Hyperparameter Tuning: Hyperparameter tuning is crucial for optimizing model
performance by selecting the most effective values for key hyperparameters. In this pro-
cess, two categories of hyperparameters were identified for tuning: basic training parame-
ters—learning rate, number of training epochs, and warm-up steps—and adapter-specific
parameters such as the rank (R-value) and alpha value of the LoRA adapter[21,24,25].
These parameters were chosen due to their significant impact on the model’s performance,
particularly in hardware-constrained environments.

To guide the tuning process, initial ranges were defined: a learning rate of 1e-5 to
5e-5, 1 to 5 training epochs, 200 to 1200 warm-up steps, an R-value of 4 to 16, and
an alpha value of 4 to 16[24,25]. These ranges were informed by engineering practices
and recommendations from existing documentation. After 100 trials, adjustments were
made to refine the search, particularly for the number of training epochs and the LoRA
rank. In the second phase of tuning, the R-value range was expanded to 4 to 32, and
the number of training epochs increased to 5 to 12, allowing further exploration of these
critical parameters while leaving the other ranges unchanged. This iterative approach
helped maximize model efficiency under the available hardware constraints.

To determine the optimal hyperparameters for final training, a multi-objective weight-
ed sum approach was used, following Bazgan et al.[26]. The weighted sum function f(x)
was initially defined for three evaluation metrics (Equation (1)).

However, hyperparameter tuning results showed that the ROUGE-L-F1 metric was
outside the expected range. As a result, the weight for ROUGE-L-F1 was set to zero in
Equation (2), removing its influence on f(x).

Finally, introducing the Inverse Loss L̃(x) as 1−L(x), the weighted sum was simplified
to f(x) in Equation (3).

7 https://huggingface.co/docs/transformers/index



f(x) = wLoss · (1− L(x)) + wBLEU ·B(x) + wROUGE-LF1
·R(x) (1)

f(x) = wLoss · (1− L(x)) + wBLEU ·B(x) + 0 ·R(x) (2)

f(x) = wLoss · L̃(x) + wBLEU ·B(x) (3)

Model Assessment To comprehensively evaluate the model’s performance for a gener-
ative DDD system, a three-phase assessment approach was used, as traditional metrics
alone offer limited insight. In the first phase, the evaluation metrics Loss and BLEU [16]
from both the training and test datasets were reviewed. The second phase assessed the
syntactic correctness and machine-readability of the generated JSON objects. Here, 100
JSON samples were generated from 10 clear and 10 experimental prompts. Clear prompts
specify a distinct DDD class object, guiding the model to create a corresponding JSON
object, while experimental prompts progressively reduce detail, giving the model more
room for errors and issues. If any of the generated samples exceeded the token length
limit of 4,000, post-processing was applied to ensure completeness, followed by verification
through a JSON parser. The final phase involved a qualitative review of the generated
JSON objects to identify potential errors and issues. This multi-step evaluation offers
a more detailed understanding of the model’s quality and its suitability for real-world
applications.

4 Results and Discussion

In this section, the results of the Hyperparameter Tuning, Final Model Training, and
Model Assessment are summarized and discussed.

Hyperparameter Tuning: Table 1 displays the results of the top three values for the
different evaluation metrics (objectives) from the hyperparameter tuning process.

The results from the hyperparameter tuning also allow for the derivation of the impor-
tance of individual hyperparameters. A Permutation Importance analysis was conducted
using a Random Forest Regressor [15] to assess the influence of each parameter on the
evaluation metrics (objectives) shown in Figure 2. This method helps to quantify how
changes in specific hyperparameters affect the model’s performance.

In the analysis of the results from hyperparameter tuning, a noticeable discrepancy
was observed between the expected and actual values of the ROUGE-L-F1 score. The
ROUGE-L-F1 score was anticipated to approach 1. During hyperparameter tuning, it
reached a maximum of only approximately 0.062 in the second trial (see Table 1). Due to
this significant deviation, the ROUGE-L-F1 metric was excluded from the determination
of the optimal hyperparameters.

Subsequently, the weighted sum method described in Section 3 was applied and cal-
culated for each trial. Assuming that all evaluation metrics converge towards 1 (using the
inverse loss as 1−Loss), it can be inferred that the trial with the maximum weighted sum
defines the optimal hyperparameters, denoted as θ∗. Table 2 presents the top five trials,
ranked by their weighted sum along with their respective objectives. Figure 3 illustrates
the convergence of the weighted sum towards 1, in relation to BLEU and inverse loss,
providing a visual representation of this progression.

The maximum of the weighted sum f(x) with θ∗ = max(f(x)) | x ∈ Trials is reached
at trial 116. Concluding to θ∗ = θf(Trial116). Therefore, trial 116 defines the optimal



Trial Number Ranking Loss↓ BLEU↑ ROUGE-L-F1 ↑ Learning Rate LoRA Alpha LoRA R Train Epochs Warmup Steps

116 1. Loss 0.031224 0.991329 0.046125 3.4e-05 30 10 6 448
128 2. Loss 0.03168 0.990963 0.04753 3.5e-05 29 13 6 419
127 3. Loss 0.031686 0.991554 0.046529 4.2e-05 22 5 6 1044

110 1. BLEU 0.034611 0.991905 0.047163 3.8e-05 17 10 12 1194
124 2. BLEU 0.032367 0.991696 0.047422 3.4e-05 24 10 9 974
125 3. BLEU 0.033012 0.991665 0.04615 3.3e-05 27 10 9 968

2 1. ROUGE 0.054714 0.987621 0.062322 1.3e-05 16 4 2 1033
130 2. ROUGE 0.038864 0.99047 0.061189 3e-05 11 9 6 675
42 3. ROUGE 0.04477 0.989132 0.05983 3.1e-05 12 11 2 852

Table 1. List of the top three Trials of hyperparameter tuning for each evaluation metric
(objective) along with the marking of the best values for each objective.

Fig. 2. Parameter importance for multiple evaluation metrics (Objectives) with importance cal-
culated using permutation importance with Random Forest Regressor [15].

hyperparameters θ∗ for the final training as follows: θ∗learning rate = 3.4e− 5 = 0.000035,
θ∗num train epochs = 6, θ∗warmup steps = 448, θ∗lora r value = 10 and θ∗lora alpha value = 30.

Final Model Training: The final model training was conducted using the optimal
hyperparameters, denoted as θ∗, which were determined during the hyperparameter op-
timization phase. This training was performed on an NVIDIA RTX 2080 GPU with 11
GB of VRAM. Key statistics related to training times and memory usage are summarized
in Table 3.

Figure 4 illustrates the progression of the loss function for both the evaluation and test
datasets. The training loss shows a high degree of fluctuation, while the evaluation loss
remains stable throughout the process. Given that the evaluation loss follows a similar
trend to the training loss without significant deviation, it can be inferred that overfitting
did not occur during the training.

Model Assessment In addition to the final training evaluation metrics (Table 3), the
results on the test dataset are shown in Table 4. A slight improvement in loss by 0.0028
and a minor decrease in BLEU by 0.0006 were observed, both considered negligible,
indicating stable model performance.

During model assessment, hardware limitations restricted generation to 4,000 tokens
per sample. Of 100 JSON samples from 20 prompts, only one terminated correctly within
this limit. After post-processing to remove incomplete key-value pairs and close JSON
objects, 81 out of 100 samples were successfully parsed.



Trial Number Loss↓ Inverse Loss↑ BLEU↑ ROUGE-L-F1 ↑ Weighted Sum f(x) ↑

116 0.0312 0.9688 0.9913 0.0461 0.9801
127 0.0317 0.9683 0.9916 0.0465 0.9799
124 0.0324 0.9676 0.9917 0.0474 0.9797
108 0.0319 0.9681 0.9912 0.0488 0.9797
102 0.032 0.968 0.9913 0.0482 0.9797

Table 2. List of the top five trials with the highest results for the weighted sum f(x) sorted in
descending order.

Fig. 3. Weighted sum in reference to inverse Loss L̃(x) and BLEU B(x).

Two prompt types were used: experimental and clear (see Section 3). All 50 JSON
samples from the clear prompts were parsed without errors after post-processing. How-
ever, 19 parsing errors occurred in samples from the experimental prompts.

The third phase involved qualitative analysis. Most samples were content-wise compa-
rable to the original dataset, but limitations emerged. In some cases, the model repeated
certain sections (e.g., Field Model) until reaching the 4k token limit. This repetitive
behavior is permitted in JSON structure but unrealistic for real-world applications, re-
quiring further investigation with more computational resources.

The analysis of the erroneously generated samples revealed two main types of issues:

1. Some generated JSON objects began within another JSON object, such as within a
key-value pair. This led to parsing problems due to violations of JSON syntax and
structure. This error is likely caused by data chunking during preprocessing.

2. The generation of unwanted characters, such as the zero-width space Unicode symbol
(Unicode U+200B [27]), was observed. Since these characters were not present in the
training data, it is assumed that they are artifacts originating from the Code Llama
7B model.

Results Conclusion: We can conclude that the model is capable of generating machine-
readable JSON objects when given appropriate prompts. Fine-tuning on a GPU with
sufficient memory produced strong results, and the abstraction of datasets reduced com-
plexity, allowing for the use of customer data. This first version is already capable of
being integrated into possible applications with respect to the described bias.



Training Duration Training Steps Loss↓ (Train Data) Loss↓ (Eval Data) BLEU↑ (Eval Data)

36.43hr 11.54k 0.0337 0.0393 0.9924

Model Size (Quantized) LoRA File Size Train Dataset Size Eval Dataset Size Available VRAM

4.0046GB 21MB 30.3MB 7.4MB 11GB

Table 3. Summary of the results of the final training.

Fig. 4. The development of the Training Loss (blue) and Evaluation Loss (red) are plotted over
the training steps of the final training, with an update every 50 steps.

Loss ↓ BLEU↑ ROUGE-1-F1 ↑ ROUGE-2-F1 ↑ ROUGE-L-F1 ↑ ROUGE-L-F1 ↑

0.0309 0.9918 0.0565 0 0.0565 0.0565

Table 4. Results of evaluation of the model from final training using the test dataset. In this case,
the ROUGE values were not within the expected range and were included only for completeness.

5 Conclusions

The rapid development of AI technology and the increasing prevalence of LLMs have
created opportunities for new applications and tools. With continuous improvements
in the efficiency of LLMs, they are increasingly being used in the consumer and Small
and Medium-Sized Enterprises (SME) sectors. This work demonstrates the potential
and capabilities of open LLMs, the extent to which the development of efficient model
trainings with approaches such as LoRA and quantization has already progressed and
how these can be combined under restrictive resources.

The work of this paper mark an initial step towards a generative AI assistance system
showed the potential for further development into an assistant system for DDD software
development framework. In particular, the ability to generate machine-readable JSON
objects enabled the use of the final model of this paper in potential tool chains and
systems. The results and findings as well as the limitations and challenges, form a broad
basis for further development.

Thus, the work of this thesis is a functional code generation model prototype that
offers further possibilities and learning, paving the way for the development of an “Artifi-
cial Intelligent” assistant system that meets the requirements and needs of DDD software
development.

The code we used to train and evaluate our models is available at https://github.
com/Tr33Bug/DomainlifecyclesCodeGenerator.

https://github.com/Tr33Bug/DomainlifecyclesCodeGenerator
https://github.com/Tr33Bug/DomainlifecyclesCodeGenerator
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