Inertia Parameter Identification with machine learning

Exploration of Neural Network Architectures for inertia parameter identification of a robotic arm

Background & Problem Description

Background

Inertia parameters are crucial for control algorithms and precise calculations

Neural Network Architectures

Exploration of Fully-Connected Networks

After testing the general data generation pipeline with a minimal possible MLP, we explored in multiple iteration steps different architectures Furthermore, we expanded the network dimensions, to use multiple excitation frames per inference – mimicking the numerical approach using least square estimators.

Discrepancies between CAD model and real system

- Inertia parameters per body-segment: ■ mass (m_i)
- center of mass vector $(\vec{r_i})$
- inertia-tensor-entries (I_{xx}, I_{xy}, ...)
- > 10 parameters per segment!
- Commonly the Lagrangian Formulation of the equations of motion are used

 n-Equations on joint level (one equation per joint) represented by a set of n equations for the generalized forces — specifically the joint torques(τ_i, i = 0..n) of the joints connecting the links

 $\boldsymbol{\tau}(t) = f_i(q_i(t), \dot{q}_i(t), \ddot{q}_i(t))$

> This equation can be expressed as a direct relationship between the system's kinematic parameters $\mathbf{Y}(q_i(t), \dot{q}_i(t), \ddot{q}_i(t))$ and the inertia parameters of the system θ

 $\boldsymbol{\tau}(t) = \mathbf{Y}(q_i(t), \dot{q}_i(t), \ddot{q}_i(t))\boldsymbol{\theta}$

Problem Description

- Joint motor encoder signals are used to calculate the joint-angular velocities and accelerations – using numerical differentiation – which is prone to errors because of noisy sensor data; this is aggravated due to the numerical differentials
- The formulation of the equations of motions on joint level has problems with friction terms and other potential non-linearities

Network	Description	$\begin{array}{l} \mathbf{Hidden} \\ \mathbf{Layers} \ (L) \end{array}$	$ \begin{array}{l} {\bf Width} \\ {\bf Factor} \ (k) \end{array} $	Layer Width (W)
Network 1	Baseline width	8	1	$W = N_{\rm out}$
Network 2	Double width	8	2	$W = 2 imes N_{ m out}$
Network 3	Increased depth	12	1	$W = N_{ m out}$
Network 4	Further increased depth	16	1	$W = N_{ m out}$
Network 5	Quadruple width	8	4	$W = 4 imes N_{ m out}$
Network 6	Octuple width	8	8	$W = 8 imes N_{ m out}$
Network 7	Sixteen times width	8	16	$W = 16 \times N_{\rm out}$
Funnel Network Decreasing layer sizes		6	Variable	W = [64, 32, 16, 8, 4, 2]

Siamese-Network Architectures

Overall Approach

We use a four-degrees of freedom – robotic arm from the humanoid robot "Sweaty" from Offenburg University as Example Problem

Newton-Euler equations with direct measurements

We use a newly designed sensor from
 Offenburg University to **directly measure** the kinematic joint parameters: \$\hat{q}_i, \hat{q}_i, \hat{q}_i, \hat{q}_i

Additionally, we use a force-torque sensor at the

base of the robotic arm, to measure the reaction

forces and moments resulting by the overall

movement of the arm: \vec{F} , \vec{M}

Steps

- 1. Formulating the Newton-Euler equations (6-equations) at the base of the robot
- 2. Generating random robot configurations (Inertial-parameter sets), under physical constraints
- 3. Generating excitation frames ("snapshot" of physical sensible kinematic parameter values) ⇒ circumventing the optimal excitation trajectory optimization
- 4. Use robot configurations and excitation frames to calculate resulting ground truth reaction

Physics inspired loss function

Use of the equations to enforce physically consistent outputs by adding an additional term to the loss function. Using the current **excitation frame** and **estimated inertia parameters** to calculate the **estimated reaction forces and moments** – minimizing the difference between estimated reactions and ground truth reactions – in addition to minimizing the Mean Squared Errors of the single predictions compared to the ground truth.

Results

Results

- Numerical Optimization
 - Accurately identified mass and center of mass for linear and nonlinear cases.
 - Linear approach accurately estimated additional Inertia-Tensor parameters; nonlinear solver showed variable accuracy (50 95%).
- Neural Network Exploration
 - Limitations of AI Methods Precision limited by data, training time, and TensorFlow's handling of custom loss functions.
 - Best AI Model:

Siamese network with eight hidden layers performed best but did not match classical optimization.

Conclusion and Future Work

forces and moments

5. Perform Numerical optimization and NN-Training on generated data sets.

Numerical Optimization and NN-Architecture Exploration

- Numerical Optimization for both the nonlinear and linearized problem
- Exploration of different MLP architectures with growing complexity as well as Siamese Network architectures
- Implementation of a custom physics inspired loss function

- Directly measured kinematic parameter values are promising and should be compared to a traditional approach using Lagrangian formulation with numerical differentiation of motor encoder values
- With real world noisy sensor data, the numerical approach should be compared with the best AI approach
- The incorporation of the equation in the loss function are promising but need further optimization to be viable

Prof. Dr. Stefan HenselProf. Dr. Bernd WaltersbergerStefan GlaserMaximilian GiesslerThomas Granserstefan.henselbernd.waltersbergerstefan.glasermaximilian.giesslerthomas.granser

@hs-offenburg.de