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Background

▪ Inertia parameters are crucial for control algorithms and precise calculations 

▪ Commonly the Lagrangian Formulation of the equations of motion are used
➢ n-Equations  on joint level (one equation per joint)
represented by a set of n equations for the generalized forces — specifically the joint 
torques( 𝜏𝑖  , i = 0..n) of the joints connecting the links

➢ This equation can be expressed as a direct relationship between the system’s kinematic
parameters                                          and the inertia parameters of the system θ

Problem Description
▪ Joint motor encoder signals are used to calculate the joint-angular velocities and 

accelerations – using numerical differentiation – which is prone to errors because of noisy 
sensor data; this is aggravated due to the numerical differentials

▪ The formulation of the equations of motions on joint level has problems with friction terms 
and other potential non-linearities 
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Discrepancies 
between CAD model 

and real system

Inertia parameters per body-segment:
▪ mass (𝒎𝒊)
▪ center of mass vector (𝐫𝐢)
▪ inertia-tensor-entries (𝐈𝐱𝐱, 𝐈𝐱𝒚, … )

➢ 10 – parameters per segment!

Exploration of Fully-Connected Networks 
After testing the general data generation pipeline with a minimal possible MLP, we explored in 
multiple iteration steps different architectures
Furthermore,  we expanded the network dimensions, to use multiple excitation frames per 
inference – mimicking the numerical approach using least square estimators.

Siamese-Network Architectures
Identical MLPs with 
different excitations 
and reactions, but 
with combined loss-
function. 
➢ Minimize sum of

squared errors of 
all estimates

Physics inspired loss function
Use of the equations to enforce physically consistent outputs by adding an additional term to 
the loss function. Using the current excitation frame and estimated inertia parameters to 
calculate the estimated reaction forces and moments – minimizing the difference between 
estimated reactions and ground truth reactions –  in addition to minimizing the Mean Squared 
Errors of the single predictions compared to the ground truth. 

We use a four-degrees of freedom – robotic arm from the humanoid robot 
“Sweaty” from Offenburg University as Example Problem

Newton-Euler equations with direct measurements
▪ We use a newly designed sensor from

Offenburg University to directly measure 
the kinematic joint parameters:   

▪ Additionally, we use a force-torque sensor at the
base of the robotic arm, to measure the reaction
forces and moments resulting by the overall 
movement of the arm:     ,

Steps
1. Formulating the Newton-Euler equations (6-equations) at the base of the robot
2. Generating random robot configurations (Inertial-parameter sets), under physical 

constraints
3. Generating excitation frames ( “snapshot” of physical sensible kinematic parameter values) 

⇒ circumventing the optimal excitation trajectory optimization
4. Use robot configurations and excitation frames to calculate resulting ground truth reaction 

forces and moments 
5. Perform Numerical optimization and NN-Training on generated data sets.

Numerical Optimization and NN-Architecture Exploration
• Numerical Optimization for both the nonlinear and linearized problem
• Exploration of different MLP architectures with growing complexity as well as Siamese 

Network architectures 
• Implementation of a custom physics inspired loss function

Results
• Numerical Optimization

➢ Accurately identified mass and center of mass for linear and nonlinear cases.
➢ Linear approach accurately estimated additional Inertia-Tensor parameters; nonlinear 

solver showed variable accuracy (50 - 95%).

• Neural Network Exploration
➢ Limitations of AI Methods Precision limited by data, training time, and TensorFlow's 

handling of custom loss functions.
➢ Best AI Model: 

 Siamese network with eight hidden layers performed best 
 but did not match classical optimization.

Conclusion and Future Work
▪ Directly measured kinematic parameter values are promising and should be compared to a 

traditional approach using Lagrangian formulation with numerical differentiation of motor 
encoder values

▪ With real world noisy sensor data, the numerical approach should be compared with the 
best AI approach

▪ The incorporation of the equation in the loss function are promising but need further 
optimization to be viable 
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