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Abstract. In this paper, we propose a machine learning based approach for iden-
tifying inertia parameters of robotic systems. The method is evaluated in simula-
tion and compared against classical methods. Therefore, parameter identification
based upon a numerical optimization is implemented and tested on ground truth
data. For a case study, the physical simulation of a four degree of freedom robot
arm is setup, formulating the problem with Newton-Euler equations in contrast
to the conventional Lagrangian formulation. Additionally, a test methodology for
assessing various neural network architectures is derived.
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1 Introduction

Inertia parameter identification is essential in robotics for precise motion planning and
control [1]. The actual inertia parameters of robots can differ from those calculated from
CAD drawings due to missing modeled parts, production tolerances, or modifications
during production [2]. Various methods for inertia parameter identification have been
proposed, as detailed by Leboutet et al. The most prevalent approach involves model-
ing the system, measuring the joint torques, and using motor encoder signals to derive
the system’s dynamic parameters at a specific time while driving it along an excitation
trajectory [3].

Traditionally, the equations of motion (EoM) are derived from the Lagrangian for-
mulation, which provides linear equations in the dynamic parameters at the joint level.
This approach relies on motor encoder signals for the dynamic parameters, making it
prone to noise and numerical differentiation errors when deriving the joint velocities
and accelerations. Furthermore, the conventional approach uses the momentary torque
values of the joint motors, often relying on indirect measurements of the torque-values
through electrical current and voltage. Since the torque values are not directly measured
on the mechanical side, nonlinear friction terms and other effects like thermal losses and
electromagnetic influences are difficult to account for, reducing the applicability of these
measurements in real-life settings [1].

In contrast, our approach uses Newton-Euler equations in an inertial frame, leveraging
direct measurements of angular velocities and accelerations with a newly developed sensor
concept at Offenburg University, along with an external force-torque measurement unit
mounted between the robot and the fixture to measure the total resulting forces and
moments produced by the movement of the system [4], [5]. This approach produces a set
of six equations for any given point in time, compared to the n-equations produced by
the EoM at the joint level, where n equals the number of joints of the studied robot.



2 Methodology

Our contribution is divided into two distinct solutions: First, classical numerical optimiza-
tion, and second, the exploration and development of a machine learning approach using
neural networks. Both methods are evaluated on a synthetic ground-truth dataset. The
dataset includes inertia parameters for various robotic configurations as well as dynamic
states (excitation frames). We simulate the corresponding reaction forces and moments,
resulting from the dynamic movement of the particular robot configuration, computed
via the Newton-Euler equations.

Numerical optimization is performed using solvers for both nonlinear and linearized
problems. The results of this optimization serve as preliminary benchmarks for the artifi-
cial intelligence (AI) methods. The AI approach employs various fully connected feedfor-
ward network architectures, which are systematically tested in different configurations.
Additionally, a more sophisticated AI approach was developed using Siamese network ar-
chitectures and a custom loss function that incorporates physics constraints derived from
the system’s analytical equations. For all neural networks, extensive hyperparameter tun-
ing was conducted based on common performance metrics and the visual inspection of
learning behavior.

3 Data Generation

The Newton-Euler equations for all systems are formulated as symbolic equations corre-
sponding software frameworks. As evaluation example, we simulate a four segment robotic
arm, with multiple configurations and dynamic states. Each configuration is paired with
corresponding forces and moments derived from the system equations. This approach
avoids the pitfalls of trajectory-based methods, such as numerical differentiation and
excitation trajectory optimization. The generated data includes the measurements of
angular positions, velocities, and accelerations. The generated inertia parameters are
additionally checked against boundary constraints to ensure validity in comparison to
real-life robots.

4 Results

The results of the classical optimization provide a baseline for evaluating the AI mod-
els. The iterative exploration of neural network architectures revealed varying degrees of
effectiveness. Networks were trained using different scaling methods and activation func-
tions, with performance assessed through training loss and prediction accuracy. Despite
extensive testing, AI based methods are still struggling to achieve the precision of classi-
cal numerical optimization without employing an enormous amount of data, parameters
or computational power.

5 Conclusions

Our findings underscore the potential of combining direct dynamic measurements with
advanced optimization and machine learning methods for inertia parameter identifica-
tion. The performance of AI methods in comparison to numerical solvers suggests further
research directions for future problems, e.g. the integration of physics-informed neural
networks to combine the numerical efficiency and accuracy with data driven generaliza-
tion capabilities.
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