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Abstract: In this paper, we address the problem of segmentation of pathogens within fluorescence
microscopy images. To our knowledge, the quantification from such images is an original problem.
As a consequence, there is no available database to rely upon in order to use supervised machine
learning techniques. In this paper, we provide a workaround by creating realistic images containing
the desired filamentary pattern and variable blur effect. Numerical results show the interest of this
data augmentation technique, especially on images corresponding to a difficult segmentation.
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Grapevine trunk diseases are a significant global issue for vinegrowers, causing 13% of vineyards in
France to be unproductive, resulting in annual losses of about 1 billion euros [1]. Esca is one of the oldest
known grapevine diseases, causing wood deterioration or dieback. The behavior of its pathogens is poorly
understood, and no cure exist. Understanding the colonization process is essential for developing treat-
ments. Inoculation experiments, observed via fluorescence microscopy (see Fig. 1), help study pathogen
behavior, and image segmentation techniques can quantify pathogen presence in grapevine wood.
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Figure 1: Examples of pathogen in vinewood images observed with a fluorescence microscope, at x10
magnification on the left and x40 on the right. The pathogen fluorescence appears as green-yellow
filaments, while wood auto-fluorescence appears as yellow-brown.

Creating a database of microscopic grapevine images with expert segmentation is a time-intensive
process, resulting in a small dataset. This limited size can hinder the use of robust supervised learning
methods, making data augmentation a crucial step. In general, data augmentation techniques are a
helpful tool to enlarge databases. This is in particular the case for medical images, for which the patient
set is often limited [2]. When handling images, basic augmentation relies on some simple transform set,
such as rotation, flip, and dilation. These techniques might be improved using advanced deep learning
approaches, such as adversarial training or neural style transfer (see [3] for a review). Those are mostly
based on the image textures, and do not incorporate a model for the image formation process. We can
make a similar observation regarding segmentation in microscopy images, as highlighted in [4]. Hence,
there is a lack for a data augmentation technique that specifically accounts for the image formation
model. This is particularly striking when handling the case of images of fungi colonizing grapevine’s
wood, which can be affected by a varying blur depending on the region of the image. In this work, we
propose to generate synthetic images that mimic real fluorescent microscopy grapevine images in order
to train supervised algorithms (see Fig. 2).

In this paper, we propose a data augmentation technique dedicated to fluorescence microscopy
images. Then, we use three datasets for training : (A) Synthetic images (see Fig.2), (B1) Real im-
ages together with expert-labeled ground truth and (C) Mixed synthetic images and real lower/higher
quality images. We use three datasets for testing : (B1) Real lower quality images, (B) Mixed real
lower/higher/fungus-free quality images and (B3) Real higher quality images. To segment our images,
we use two models, the random forest algorithm [5] and an implemented convolutional network U-Net [6].

Prior to using the segmentation methods, we extract relevant features as a pre-processing. The
latter were identified in a preliminary random forest-based study using the Ilastik software [7]. The
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features were sorted along their Gini importance [8], and the 14 first features were retained (see Table 1).
In addition, preliminary experiments have shown that including classical image filters (namely Gabor,
Sobel, Roberts, Scharr, and Prewitt filters) also improves the segmentation. Then, for any 3-channel
RGB input image, the pre-processed version contains 57 channels.
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Figure 2: Illustration of the synthetic image formation process

Identity Hessian Gaussian Gradient Magnitude
σ = {3; 5; 7} σ = 2

Difference of Gaussian (σi, σj) Laplacian of Gaussian Eigenvalues of Tensor Hessian of Gaussian
= {(1, 3.5); (1, 12); (1, 30)} σ = {0.5; 1.6; 3} Structure σ = 0.7 Eigenvalues σ = 3.5

Table 1: Features retained based on their Gini importance.

So, we test how their use impacts segmentation results, depending on the choice of the training
and testing databases. The obtained results for the cleaner images show that supervised segmentation is
feasible even on a small database, i.e. without augmentation. For lower-quality images, the addition of
the synthetic images was indeed helpful, leading to noticeable accuracy improvements with an average
1.57% improvement of accuracy compared with the dataset train real lower quality images (see Fig. 3).

This work stems a few perspectives on the topic, as it could be generalized to other segmentation
problems in fluorescence microscopy, as well as other imaging techniques.
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Figure 3: Example of results on real lower quality image.
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