



## Artificial Intelligence for Quality Assurance and Troubleshooting in Industry

Rudolf Hoffmann<sup>1</sup>, Slimane Arbaoui<sup>2</sup>, Léa Charbonnier<sup>3</sup>, Amel Hidouri<sup>2</sup>, Ali Ayadi<sup>2</sup>, Franco Giustozzi<sup>2</sup>, Thomas Heitz<sup>4</sup>, Julien Saunier<sup>3</sup>, Frédéric Pelascini<sup>4</sup>, Christoph Reich<sup>1</sup>, Ahmed Samet<sup>2</sup>, Cecilia Zanni-Merk<sup>3</sup>

Institute for Data Science, Cloud Computing and IT Security; Furtwangen University; 78120 Furtwangen
ICube, CNRS (UMR 7357) INSA Strasbourg, University of Strasbourg, 67000 Strasbourg
INSA Rouen Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen
CETIM – Centre Technique des Industries Mécaniques, 67402, Illkirch-Graffenstaden

Project Website: www.x-quality.de







## Agenda

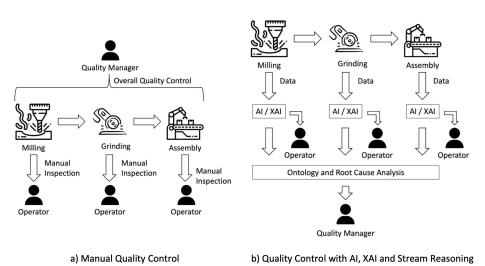
- Introduction
- X-Quality Conceptional Framework
- Combining AI and FTA
- Discussion
- Conclusion

## Introduction



#### **Problem Description**

- Monitoring manufacturing processes is essential to prevent failures and maintain product quality.
- Using AI to automate quality assurance and improve accuracy and consistency in defect detection.
- Results produced by AI must be explainable to enable troubleshooting and acceptance by experts and regulators.


### Objective

 Improve quality assurance and troubleshooting processes using AI/XAI

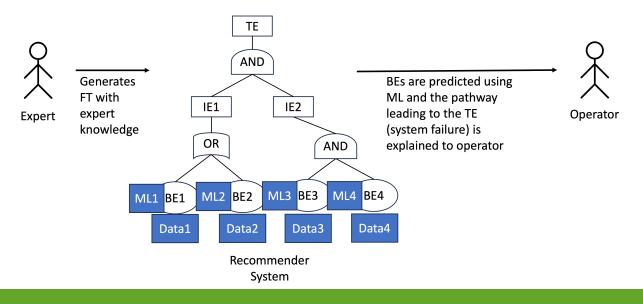
# X-Quality Conceptional Framework



- In multi-stage manufacturing processes failures at one process can propagate, affecting subsequent processes
- Each operator does manual quality control at machine and quality manager supervises overall process



- From each machine data is collected and AI/XAI techniques are applied
- Data streams, predictions, and explanations are used to enrich ontology
- Quality manager used ontology to trace root cause


# X-Quality Conceptional Framework



- 3 approaches integrated into the X-Quality conceptional framework
- 1) LSTM-CNN combination to predict quality issues in time series data and SHAP for explanation
- 2) Combination of AI and FTA for transparent TE occurrence
- 3) Stream reasoning to process continuous real-time data streams from multiple sources and enrich ontology. Using ontology to trace quality issues back to root causes



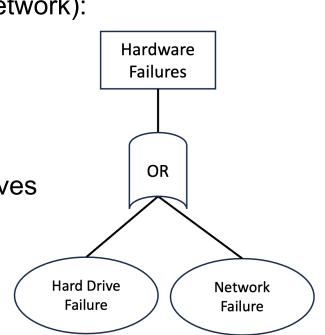
- Combining AI and FTA to enhance prediction and understanding of system failures.
- Expert generates FT
- ML models are built to predict the BEs
- FTA to determine TE occurrence



- Proof of Concept
- Using a simple FT focusing on Hardware failures
- Using **2 datasets** to predict the BEs:
  - SOFI (Symptom-Fault relationship for IP-Network):

Information about extensive enterprise

network's performance


34 features (e.g. Bits received, speed, ...) <a href="https://data.mendeley.com/datasets/tc6ysmh5j8/2">https://data.mendeley.com/datasets/tc6ysmh5j8/2</a>

✤ SMART: S.M.A.R.T attributes from hard drives

#### 56 features

https://www.kaggle.com/datasets/sskanyal/

harddrive-cleaned-smart-dataset







### Predicting the TE

- Merging both datasets to predict the TE
- Using features of both datasets for TE prediction
- Using DL model

### **Predicting the BEs**

- Using both datasets
- Using two DL models (one model each dataset)
- FTA to determine TE occurrence



### Results

• K-fold cross validation with 10 splits

| Metric    | <b>TE Prediction</b> | <b>BEs Prediction</b> |
|-----------|----------------------|-----------------------|
| Accuracy  | 99.1 %               | 99.4 %                |
| Precision | 99.7 %               | 99.8 %                |
| Recall    | 98.6 %               | 99.1 %                |
| F1-Score  | 99.2 %               | 99.5 %                |
| AUC-ROC   | 99.9 %               | 99.6 %                |

- Approach "BEs prediction" slightly better
- Additional benefit:
  - Identification of root causes
  - Interpretability of results
- However, BE prediction might be opaque

## Discussion



### **Strengths of the X-Quality Conceptional Framework**

- Enhanced defect detection and troubleshootingby integrating AI, XAI, and expert knowledge
- Provides actionable explanations and contextual insights

### **Challenges of the X-Quality Conceptional Framework**

- High computational resources for large-scale deployment
- Ontology and fault tree updates require expert input





#### **Future Work**

- Improving scalability by automating ontology updates
- Improving interpretability and comprehensability of explanation
- Developing methods to process high-frequency data for real-world deployment

## Conclusion



- The X-Quality Conceptional Framework combines AI, XAI, and expert knowledge
- Offering explanations to enable troubleshooting
- Downtime reduction, efficiency improvement, and cost reduction





#### **DL** architecture:

| Layer  | Units | Activation Function |
|--------|-------|---------------------|
| Dense1 | 128   | ReLu                |
| Dense2 | 64    | ReLu                |
| Dense3 | 32    | ReLu                |
| Dense4 | 1     | Sigmoid             |

### Hyperparameters

- Optimizer: Adam (Ir=0.001)
- Loss: Binary Crossentropy
- Epochs: 30
- Batch Size: 32